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Abstract-A comprehensive numerical study is made of the velocity and convective heat transfer charac- 
teristics of developing laminar flow in a 90” curved square duct. Straight inlet and outlet tangents are 
attached to the duct. The fully elliptic, three-dimensional, steady, incompressible Navier-Stokes equations 
are solved numerically over wide ranges of Reynolds number Re (and corresponding Dean number). A 
body-fitted coordinate system is utilized. Two thermal boundary conditions at the bend were adopted : a 
constant wall temperature condition, and a constant wall heat flux condition. The elaborate numerical 
results are consistent with the available flow field data. The details of the temperature field as well as the 
Nusselt number in the curved region are depicted. The influence of Re on local heat transfer in various 
parts of Aow field is scrutinized. The impact of the thermal boundary condition at the bend is examined. 
In the vicinity of the entrance of the curved region, heat transfer is higher on the inner wall due to the 
presence of local accelerating flows near the inner wall. However, at further downstream, heat transfer is 
higher on the outer wall, since the maximum of the mainstream is shifted toward the outer and side walls 
by the action of centrifugal farce. As the Reynolds number increases, a region of reverse flow appears in 
the corner area between the outer and side walls near the inlet of the bend. Heat transfer is reduced in this 
region of reverse flow. The present computational results clearly illustrate the variations of the Nusselt 

numbers, both in the peripheral and streamwise directions. 

7. INTRODUCTION 

CONSIDERABLE interest has recently been shown in 
three-dimensional flow and heat transfer charac- 
teristics of fluids passing through a strongly curved 
duct. This has been motivated by the need to acquire 
an improved understanding of transport processes at 
work. Strongly curved ducts, in particular, with 
square cross-section, are widely used in various types 
of heat-exchanging industrial devices and high-tech 
electronic systems. One prominent feature is the gen- 
eration of the secondary Row, which mainly results 
from the dynamic interplays of pressure gradient, cen- 
trifugal force and viscous effects. Owing to these sec- 
ondary flows, convective transports are generally 
more effective in a curved duct than in a straight 
duct of comparable size. However, substantial local 
variations of heat transfer are also noted in a curved 
duct. This warrants a thorough examination of the 
flow and heat transfer properties, local as well as 
global, in order to design and operate efficiently these 
sophisticated modern technological systems. 

The importance of accurate analyses of three- 
dimensional flow fields in a curved duct has well been 
recognized ; however, comprehensive and validated 
info~ation on heat transfer characteristics under 
developing flow conditions has been relatively scanty. 

t Author to whom correspondence should be addressed. 

Most of the existing flow data have been obtained for 
fully developed flows [l, 21. The primary concern of 
these investigations has been with the structure of 
secondary flow. Reference [3] presented experimental 
data on the velocity distributions for developing flows 
in a 90‘ curved square duct by using a laser Doppler 
velocimeter. A parallel computation was also made 
in ref. [3] by use of a rather coarse grid network. 
Complementary flow field measurements were 
reported later by ref. [4]. 

Prior studies available in the literature on heat 
transfer in a curved duct mostly dealt with the cases 
of fully-developed heat transfer under fully-developed 
flow conditions 15, 61 or developing heat transfer 
under fully-developed flow conditions [7]. Only a few 
experimental investigations on developing heat trans- 
fer in developing curved duct flow were documented, 
and they were in the turbulent flow regime, e.g. ref. 
[S]. The scarcity of reliable heat transfer data in devel- 
oping flows in a curved duct is conspicuous in the 
engineering literature. 

Numerical simulations of developing curved duct 
flows and associated heat transfer have been a for- 
midable undertaking. Extreme complexities are 
involved in computing three-dimensional flows over 
broad ranges of relevant parameters. consequently, 
preceding numerical efforts were carried out under 
restrictive and simplifying assumptions in solving the 
governing Navier-Stokes equations [9, IO]. However, 
the deficiencies and potentially erroneous results 
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NOMENCLATURE 

A” link coefficient for the u-momentum S$ source term for the general scalar 4 
equation S” source term for the ~-momentum 

A’ link coe~cient for the ~~-momentum equation 
equation S’ source term for the o-momentum 

A” link coefficient for the iv-momentum equation 

equation S” source term for the w-momentum 

C _p pressure coefficient ((P* - P,)/(pu$Z)) equation 

C, average pressure coefficient over the duct T nondimensional temperature 
cross-section T* dimensional temperature 

i;,, av’erage pressure coefficient at the duct Tb nondimensional bulk temperature 

wall TO dimensional duct inlet tei~perature 
f) hydraulic diameter of the duct L dimensional wall temperature 
De Dean number (Re(D/Zr,) “2) UU dimensional average velocity at the duct 

L width of wall inlet 

L, peripheral length of the duct U, c, w nondimensional velocity components 
n normal direction to the wall IA*, II*, IV* dimensional velocity components 

NU local Nusselt number at the wall zi, & $ guessed velocity components 

W/K-) U’, CI, w’ correction velocity components 
Ahi plane-averaged Nusselt number at the I/‘, V, W contra~~ariant velocity 

wall components 

N% peripherally-averaged Nusseh number .y, I’, = nondimensional Cartesian 
at the wall coordinates 

P nondimensional pressure x*, !‘*, z* dimensional Cartesian 
P* dimensional pressure coordinates. 
P guessed pressure 
P’ correction pressure Greek symbols 

PO dilnensional duct inlet pressure % thermai ditfusivity 
Pr Prandti number (viir) r”’ effective diffusion coefficient 

Y heat flux (1 curve angle 
R curvature ratio (ro/D) IC thermal conductivity of the fluid 

r0 dimensional mean radius of the curved 1’ kinematic viscosity 

region i”, g, i curvilinear coordinates 
RC? Reynolds number (+!I/v) P density 

S, dimensional total surface area of the 4 dependent variable of general transport 

curved region of the duct equation. 

obtained by using simplified versions of the governing main thrust of the present work is placed on carrying 
equations, such as parabolic or semi-parabolic treat- out extensive and in-depth numerical calculations of 
ments, for duct flows with strong curvature have been developing convective flow and heat transfer over a 
explored [l I]. Recently, publications illuminating the wide range of Reynolds numbers. The unapproxi- 
computational results of flow field at selected Reyn- mated, elliptic, three-dimensiona steady incom- 
olds numbers, secured by using elliptic three-dimen- pressible Xavier-Stokes equations are solved numeri- 
sional formufations, indicated generally satisfactory cally. The computational results will provide a 
agreement with the flow measurements [I 1, 121. These valuable check to verify the previous numerical pre- 
previous endeavors substantially enlarged our rudi- dictions which were obtained under several restrictive 
mentary knowledge of global characteristics of flow approximations, such as parabolic or semi-parabolic 
and heat transfer in strongly-curved ducts. formulations. 

The purpose of the present study is to provide an 
enhanced understanding of local heat transfer prop- 
erties in the developing region of a curved duct. The 
subject is of particular importance at higher Reynolds 
numbers and with stronger curvature ; the possibility 
of the existence of reversed flow regions near the inlet 
of the curved section leads to a significant reduction 
of local convective heat transfer in these zones. The 

In the present paper, it is intended to extend the 
numerical simulations in a systematic way to disclose 
the explicit dependence of the results on the Reynolds 
number. The local thermal field data in the developing 
flow region have not been given in sufficient detail 
in the literature. References [I 11, [13] illustrated 
numerical results for one value of the Reynolds num- 
ber using a constant wall temperature boundary con- 
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dition at the bend. One objective of the present study 
is to comprehend the change in flow character under 
two different thermal boundary conditions, i.e. a con- 
stant wall temperature condition and a constant wall 
heat flux condition. Owing to the greatly expanded 
computing resources, the computational mesh net- 
work is appreciably finer in the present paper than 
those of the preceding numerical studies [ 11, 131. It is 
also worth mentioning that the temperature field data 
of ref. [I I] were acquired with the inlet and outlet 
tangents excluded. This may introduce some un- 
specified numerical errors. It is of interest to point 
out another potentially significant improvement in 
numerical computational methodology of the present 
study. In the prior investigations [3, 11, 131, three 
different coordinate systems were used to handle sep- 
arately the straight ducts and the bend region. 
However, as observed by Kajishima ez al. [14], such 
numerical procedures may produce numerical errors 
due to the discontinuity at the conjunction zones of 
two different adjoining coordinate systems. In an 
effort to remedy such possible localized numerical 
inconsistencies, a continuous body-fitted coordinate 
system is utilized in the present study. These will pre- 
sumably increase the accuracy and reliability of the 
present numerical results. 

The numerical results are processed to describe the 
three-dimensional features of flow and heat transfer 
inside of and on the duct wali in the developing flow 
region. The principal dynamic ingredients peculiar to 
developing three-djmensional flow and heat transfer 
will be identified and plausible explanations will be 
rendered. Emphasis is given to the axial variations of 
the average Nusselt number as well as to the peripheral 
variations of the local Nusselt number on the curved 
duct wall. These issues have not been explicitly 
addressed in the earlier investigations. 

In connections with the presence of reversed flow 
zones, the necessity of using the elliptic fo~ulation 
is stressed. The present study is supportive of the 
assertion that, at high Reynolds numbers, a reversed 
flow zone appears in the corner of the outer and side 
walls near the inlet of the curved region [3] ; the associ- 
ated heat transfer decreases measurably in this zone. 
When the thermal boundary condition is specified by 
a constant wall heat flux, the numerical results indicate 
substantial changes in local temperature in this corner 
area. 

2. THE PROBLEM FORMULATION 

The governing Navier-Stokes equations, expressed 
in nondimensionalized tensor form, are : 

wherei,j== 1,2,3, 

Re = u,D/v, Pr = v/n. 

In the above equations, (u,, u2 and UJ are the velocity 
components in the x, y and z directions (expressed 
later as u, u and w, respectively) ; u. the dimensional 
average velocity at the duct entrance ; D the hydraulic 
diameter of the duct; T the temperature; Pr the 
Prandtl number; Re the Reynolds number. In the 
present problem formulation, all the physical prop- 
erties are taken to be constant. 

The nondimensionalization is based on the fol- 
lowing reference values for the respective dimensional 
physical quantities (starred) : 

x = .x*/D, y = y*/D, z = z*lD, u = u*/uo, 
11 = u*ju(), w = w*/uo, p = p*kJ4), (2) 

T = (T* - T,)/(T, - To) 

(in the case of constant wall temperature condition), 

(in the case of constant wall heat flux condition) 

(3b) 

where To the dimensional duct inlet temperature, r, 
the dimensional wall temperature in the curved region 
for the case of (3a), qw the dimensional wall heat flux 
in the curved region, and K the thermal conductivity 
of the fluid. Figure 1 shows a schematic of flow con- 
figuration. 

Equations (lb) and (lc) can be written in terms 

inner wail-7 

FIG. I. Duct geometry and coordinate system. 
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of a single general equation for an arbitrary scalar 
dependent variable (f, as 

where P is the effective diffusion coefficient, and S“’ 
the source term. 

A general three-dimensional curvilinear coordinate 
system is introduced in solving the full elliptic forms 
of the Navier-Stokes equation. Let (& II, i) be defined 
iiS 

c’ = 5(x.y,3). q = q(s,I’,z), i = i(X>.!J,Z), (5) 

then, equation (4) is transformed into 

(~#)~+~~#)~~-(~#?~ 

= (Pa, 4;): + (P’a,&), + Pa,&), -I-S (6) 

where, 

Here U, V and Ware contravariant velocities, and J 
is the Jacobian of the coordinate transformation. 

Now the associated boundary conditions will be 
described. The velocity boundary conditions at the 
duct wall are 

U = 0, 1’ = 0. w = 0. (7a) 

For the temperature boundary conditions at the duct 
wall, only the curved region is heated and the straight 
fore- and after-tangents are assumed adiabatic. Thus, 
the thermal boundary condition for the straight tan- 
gents is 

dT/&r = 0 (adiabatic wall), 

and for the curved region 

(7bl 

T,, = 1 

(in the case of constant wall temperature condition) 

i7cf 

or 

(in the case of constant wall heat flux condition) 

Ud) 

where n denotes the direction normal to duct wall, 
and SC the dimensional total surface area of the curved 
region of the duct. In the process of deriving (7d), it 
is noted that the nondimensionalization of tem- 
perature is in accordance with (3b) (see Akiyama et 

ul. [15]). It should also be mentioned that Pr = 1.0, 
and the numerical value of the rise of the non- 
dimensional bulk temperature between the inlet and 
outlet was set to be 0.2. This particular value of 0.2 
was selected in order to facilitate quantitative com- 
parisons of the present results with the numerical data 
of Akiyama (see the results of run number (I) of 
Akiydma [I 51, for Re = 1000, R = 2, De = 500, PP = 
0.71). Due to the nondimensionalization schemes 
adopted in the present paper, the values of the tem- 
peratures in the present results are approximately IO 
times those of the nondimensional tenl~~tures of 
ref. [Is]. 

Due to symmetry of the duct geometry, only one 
half of the duct passage is included in the numerical 
calculation. The conditions on the duct symmetry 
plane are 

The duct inlet velocity was specified as that of fully 
developed laminar flow in a straight square duct flow, 
obtainable from the analytic solution [16]. The vel- 
ocity is normalized by the average inflow velocity uO. 
In order to minimize the effect of the inlet and exit 
boundary conditions on the flow fields in the curved 
region, the inlet and exit planes are located at 
sufficiently large distances from the curved region ; 
the inlet plane is located at 10 hydraulic diameters 
upstream of the curved section, and the exit boundary 
condition is given at 30 hydraulic diameters down- 
stream, as shown in.Fig. 1, The lengths of inlet and 
outlet tangents taken in this study are larger than 
those taken by other numerical studies [3, IO, 121. 

The inlet boundary conditions. imposed at IOn 
upstream of the curved region. are 14 = the series solu- 
tion of fully developed laminar flow in a straight 
square duct (Ward-Smith [ 161) 

L’ = 0, iI‘ = 0. T= 0. (70 

The exit boundary conditions, enforced at 3On 
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downstream of the curved region, are given by the 
Neumann-type conditions [ 171 

The main task now is to secure a suitable numerical 
solution technique for the system of partial differential 
equations (6) in the transformed domain, described 
by one scalar variable b, with the associated boundary 
conditions (7a)-(7g). 

3. NUMERICAL METHOD 

The governing equations were soived by using the 
SIMPLE-C algorithm, which had been documented 
in refs. (18, 191. This algorithm upgraded the pressure 
correction technique of the original SIMPLE algor- 
ithm [20]. A hybrid scheme suggested by ref. 1201 
has been employed to represent the convection and 
diffusion terms. Iterations were required to attain con- 
verged solutions with a prescribed accuracy level ( IOe6 
in the present study).. The spatial mesh points were 
(103 x 25 x 15) in the (5, Q, [) computational domain. 
The mesh was stretched to cluster the grid points near 
the duct walls. All computations were implemented 
on a CRAY-2S supercomputer. 

Equation (6) is integrated over the control volume 
d< dq d<, and it can be cast into a general form of 
finite difference formulation 

where, 

A, = A,+A,+A,+A,+A,CAI, 

and A,, A,, A,, A,, A,, Ab are the link coefficients, 
and S, the discretized source term. From equations 
(4) and (8), the finite difference forms of momentum 
equations can be written as 

Using properly guessed values of pressure and vel- 
ocities, approximate velocity components oft, 6 and 
ii, can be obtained from equation (9). To satisfy the 
continuity equation, the pressure and velocities are 
corrected by 

P = P+P?, zf = li+u’, u = z?-to’, w = bG+w’. 

(10) 

The velocity correction equations are obtained using 
equations (9) and (10) : 

A$; = cA,“u;+S”-P: 

A;$, = CA;w;+S”-P;. 

In line with the SIMPLE-C algorithm, the above vel- 
ocity correction equations (11) become 

u; = LY’P:, 2’; = WP’,,, w; = D”?y 

(121 

where, 

Introducing equations (12) into the continuity equa- 
tion (la), the Poisson equation is obtained : 

(D”Pk),+(D”P;,),4(n”P:), = G.z+z;, t-9,. (13) 

After solving equation (131, the corrected velocities 
and pressure can be found from equations (10) and 
(12), and these corrected velocities and pressure can 
be used again as the initial guesses for equation (9). 
The same procedure is repeated until converged solu- 
tions of velocities and pressure are achieved. 

The three momentum equations and energy equa- 
tion are uncoupled in the forced convection heat 
transfer calculation; therefore, only after the fully 
converged solutions for velocity fields are in place, the 
thermal fields are computed. 

4. RESULTS AND DISCUSSION 

Table 1 summa~zes the parameter values for the 
runs in the present computations. In order to sys- 
tematically assess the effect of the Reynolds number, 
five different values of Re were chosen. As stipulated 
in equations (3a) and (3b), for each run, two cases of 
the thermal boundary conditions at the duct wall were 
used. The Prandtl number was set Pr = 1.0. The case 
of Re = 790 serves as a benchmark test ; the numerical 
results can be explicitly checked against the existing 
data in the literature [3, 4, IO-131 which were made 
for this particular value of Re. 

In the ensuing sections, eminent features of flow and 

Table I. Parameter values for the 
computations 

--_ ____..” -- 

Re R De 

2.3 23 
2.3 233 

790 2.3 368 
4.6 260 

1000 2.3 466 
2000 2.3 933 
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Ftc. 2. ~~~~~~o~rnc~t of main stream velocity (Re = 790, 
R = 2.3). ~ present results, C.-j experiment (ref. [3]). (a) 

Symmetry plane; (b) plane at 0.250 from the side wail. 

heat transfer will be discussed for two representative 
cases, Re = 50 and Re = 790 ; these two characterize 
the ffow properties in the low- and high-~~yuo~ds 
number regimes. 

We shall first brieffy review the velocity patterns. 
The Aow structures in a curved duct at a reiariveiy 
high Re have been described previously [3,4, IO. 121: 
we shall recapitulate the highlights only, 

Figure 2 exemplifies the developing mainstream 
flows in the curved region at Re = 790. The main- 
stream velocity becomes larger near the outer wall as 
the flow moves downstream. The variations in the z- 
direction, which denote the three-dimensionality, are 
afso captured well by the present computations. Fig- 
ure 2 is shown to appraise the reliability and accuracy 
of the present numerical simurations by repeating par- 
allel computations to the experimental measurements 
of ref. [3] ; the agreement, as demonstrated in Fig. 2. 
is satisfactory. 

Figure 3 exhibits both the mainstream and sec- 
ondary flows for a low-& regime (Fig. 3(a) for 
Re = SO> and for a high-k regime (Fig. 3fbj for 
Re = 790). As ascertained, independent flow data are 
available [3, 4] for Re = 790, and the general flow 
patterns based on the present numerical results are 
consistent with these preceding observations. It is 
noted that, in the high-Re regime, a small area of flow 
reversal is present in the corner between the outer and 
side walls near the entrance region of the curved duct 
(see Fig. 3(b) at 0 = 0” and 0 = 30’). This is due to 
an appreciable adverse pressure gradient arising from 

( > a 
(30”) (60.1 

(W 
inner 

(W 

re’versed 
flow region 

reversed 
flow rsgion 

FIG. 3. Iso-velocity lines of mainstream (left half plane) and secondary flow patterns (right half plane). 
The values of iso-velocity contour lines, are from outer to inner wall, 0.2,0~4,0.6,0.8, 1.0, 1.2, 1.4, 1.6 and 

l.8. @) Re = 50, R = 2.3: &) I&? = 190, R = 2.3. 
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substantial curvature effects. Further details of the 
mainstream flow near the curved walls are depicted in 
Fig. 4. As pointed out in Fig. 3(b), the presence of a 
reverse flow zone in the vicinity of the corner between 
the outer and side walls in the range 0” 6 0 6 30” is 
discernible in Fig. 4(b). The direction of the flow near 
the side wall is consistent with the flow visualization 
of ref. [4]. However, as manifested in Figs. 3(a) and 
4(a), when Re is low, the flow reversal is not con- 

(a) 

(A) 

-1.0 uo center 1 ine 
53 s f = =3 s i z==z=xz~ - - - - 4 2 
_ _ _ - ..- _ ?.- / _ _ _ - _ c c 1 _ _ _ _ _ _ c _ 
z z I ; z z 2 z _ _ _ _ A _ 
icl !$I z * r z * r 12” 18" 24” 30” 36” 42” 

(B) 
side wall 

(b) 

-1.0 uo 

(A) 

-1.0 uo center 1 ine 

;y f2” f6’ ;4” 30” 36” 42” 

(B) 
side wall 

FIG. 4. Mainstream velocity vectors. (A) On the plane located 
at 0.01360 from the side wall; (B) on the plane located at 
0.01470 from the outer wall. (a) Re = 50, R = 2.3; (b) 

Re = 790, R = 2.3. 

spicuous ; in the low-Re regime, the adverse pressure 
gradient is not sufficient to cause the reverse flow. The 
observation of ref. [3] had suggested that the reverse 
flow zone exists in a duct when the Dean number 
De > 125. The elaborate numerical computational 
results of this study are qualitatively supportive of this 
experimental finding. Figures 3 and 4 clearly recapture 
the well-documented general flow character; at high 
Re, the secondary flows are more vigorous, and the 
position of the maximum mainstream velocity moves 
toward the outer and side walls. The behavior of 
secondary flows at Q = 0” merits some mention. The 
present numerical results indicate that at 0 = 0’, the 
secondary flows are predominantly directed toward 
the inner wall in both Figs. 3(a) and (b). This is in 
conformity with the recent experimental and numeri- 
cal studies of refs. [14, 211. This may be attributed to 
the apparent imbalance of radial pressure gradient 
and the centrifugal force. Near the inlet section of 
the curved duct, a positive radial pressure gradient 
already exists, but the centrifugal force, which drives 
radially outward flow, has not built up yet. The 
intensification of the secondary flow, as the curve 
angle 0 increases, is discernible in Figs. 3(a) and (b). 

The pressure distributions, as depicted by average 
pressure coefficients C,, are plotted in Fig. 5. In Fig. 
5 the cross-sectional average pressure coefficient, C,, 
at a given curve angle 0, is defined by 

-s is 
C, = C,dA dA, 

where dA is the infinitesimal cross-sectional area per- 
pendicular to the axial direction. Also, at the inner or 
outer wall, the average pressure coefficient, CPw, at a 
given curve angle 0, is defined by 

- s 
Cpw = ; C,dL, 

where L denotes the local wall width concerned. In 
general, pressure is high (low) near the outer (inner) 
wall, a well-known phenomenon in a curved duct. 
However, this radial pressure gradient varies sub- 
stantially with the curve angle. It is noticeable that in 
the high-Re regime (e.g. see Fig. 5(b) at Re = 790) 
the unfavorable pressure gradient in the mainstream 
direction is substantial on the outer wall between 
0 g 0” and 0 E 45”. This gives rise to the reversal 
of mainstream flow between Q g 0” and 0 g 35”, as 
demonstrated in Figs. 3(b) and 4(b). The computed 
result of cross-sectional average pressure coefficient, 
C,, in Fig. 5(b) is in good agreement with the data of 
ref. [3]. 

4.2. Heat transfer 

We now turn to the thermal field and associated 
heat transfer. As remarked earlier, the developing heat 
transfer in a duct with strong curvature has not been 
addressed in sufficient detail in the literature. It is 
noted that ref. [ll] produced temperature distri- 
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(a) 

streamwise position 

(b) 

streamwise position 

FIG. 5. Axial variations of average pressure coefficients C,. 
(The abscissa and ordinate for the bend are enlarged for 
clarity.) -.....- C,,cross-sectional average, --- CPW at the 
inner wall. --.-- C,,_ at the outer wall. (a) Re = 50, R = 2.3 : 

(b) Re = 790, R = 2.X 

butions by performing three-dimensional elliptic type 

calculations using a rather coarse mesh. These com- 
putations were about a single Reynolds number 
Re = 790, and the constant wall temperature con- 
dition was prescribed. A careful literature survey has 
revealed no other apparent published information on 
this particular aspect of heat transfer problems. 

First, axial variations of the thermal fieids are scru- 
tinized. It is advantageous to define a bulk tem- 
perature 7;, inside the duct as 

UdA, 

where 0’ is the axial velocity, dA the infinitesimal cross- 
sectional area perpendicular to the axial direction. 
In the present problem formulation, only the curved 
portion of the duct is exposed to external thermal 
forcing (e.g. constant wall temperature or constant 
heat flux through the wall), and the straight tangents 

are insulated. Consequently, it follows that the vari- 
ation in r, is expected only in the curved portion. 

Figure 6 illustrates the axial variations of T,. Under 
the condition of constant heat fiux at the wall, the 
variation of Tb is approximately linear in the axial 
direction, as can be easily anticipated. However, for 

the case of constant wall temperature condition at 
the wall, some comments are in order. Figure 6(c) 
indicates that, in the low-Re regime (Re = 50). the 

rate of increase of T, is rapid near and immediately 

after the inlet of the curved duct. In this low-& 

regime, the influence of the secondary flow is meager 
(see Fig. 3(a)) ; the heat transport characteristics arc 

qualitatively akin to those inside a straight duct. On 
the other hand, in the high-Rc regime (see Fig. 6(d) for 
Rc = 790), the rate of change of T,, is fairly uniform 

throughout the entire curved portion of the duct. In 
this case, the secondary flow is intense, and the overall 
heat transfer is effectuated by axial as well as scc- 

ondary flow. It is worth noting in Fig. 6 that, although 
only the curved portion is exposed to external thermal 
forcings, Th starts to be affected a little ahead of the 
curved inlet (0 = 0’). This manifests the elliptic nature 

of the present computations. An analogous feature 
was discernible in the plots of the pressure fields, as 

shown in Fig. 5. The computational results of ref. [ 151 

about a curved pipe disclosed a similar trend in the 
axial variation of T,. 

The three-dimensional structures of therm& fields 
in the developing region are exhibited in Fig. 7. It 

is obvious that the isotherm contours in the cross- 
sectional views resemble the iso-velocity contours of 
the mainstream, as depicted in Fig. 3. This was 
observed also previously by Yee ct al. [I 11. In particu- 
lar, in the high-Re regime (see Figs. 7(b) and (d) for 
Re = 790), the isotherm contours are crowded near 
the outer and side walls, especially at large values of 
t) ; these are characteristic of the mainstream velocity 
contours. As asserted earlier, the impact of secondary 
flow on the convective transport is substantial, and, 

consequently, the maximum of the axial flow tends to 
be shifted toward the outer and side walls. At very 
small values of 0. the axial fiow is larger near the inner 
wall than the outer wall; therefore, convective heat 
transfer is more effective near the inner wail region. 
However, as H increases, the axial flow intensifies near 
the outer wall owing to the centrifugal force generated 
in the curved passage. This brings about enhanced 
convective heat transfer activities near the outer wall 
region. 

An interesting feature of the thermal field pattern 
may be seen near the corner of the outer and side 
walls in the high-Reregime near 0 = 0 (see Fig. 7(b)). 
Wotice that the local temperature near this corner 

reaches a high value, although the bulk tempe~ture 
at the inlet of the curved duct (0 = 0 ‘j is very low. 
The occurrence of a localized area of high temperature 
may be identified as an extreme reduction of con- 
vective heat transport in this region. This is attributed 
to the presence of the zone of flow reversal, which 
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(al (b) 

‘baby, ; ~~, Tbiii, ~ Mt, 

-iaa a” 45” 90” +3a 0 -toll a” 450 so” $30 D 
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FIG. 8. Surface temperature dist~butions (constant wall heat flux boundary condition). (a) Re = 50, 
R = 2.3 ; (b) Re = 790, R = 2.3. 

was discussed earlier (see Figs. 3(b) and 4(b)). The 
numerical study of ref. [15] for a 90” curved pipe 
also disclosed a qualitatively similar trend of having a 
localized high-temperature region near the outer wall 
in the inlet plane, Due to the geometrical difference 
between ref. [15] and the present study, no direct and 
more quantitative comparisons are tenable between 
these two sets of results. 

The constant-flux thermal boundary condition 
imposed on the duct wall may be viewed as an 
approximation to certain realistic industrial systems. 
In these situations, accurate determination of the duct 
surface temperature distribution is a meaningful task. 
Examples may be found in various types of precision 
heat exchangers, which include a large number of 
curved ducts. Figure 8 exhibits isotherm contour plots 
on the surfaces of the duct. At a given cross-sectional 
plane, the local temperature is, in general, higher near 
the corner regions than in the interior; convective 
activities are weaker in the corner regions due to the 
existence of slower-moving particles. The presence or 
absence of the corner region makes the principal 
difference between the case of a curved duct and a 
curved pipe [15]. As succinctly demonstrated in Fig. 
S(a), in the low-Re regime, the region of highest tem- 
perature is located near the corner of the inner and 
side walls at a small distance prior to 0 = 90”. The 

axial velocity is minimum at this location. On the 
contrary, in the high-Re regime (see Fig. 8(b)), the 
highest temperature is found near the corner of the 
outer and side walls somewhere between 0 = 0” and 
0 = 15”. As stressed previously, this region cor- 
responds to the zone of Bow reversal (see Figs. 3(b) 
and 4(b)). It is also of interest to observe in Fig. 
8(b) that the overall temperature distributions in the 
corner areas between the inner and side walls tend to 
be high. Figure 8(b) also shows a region of relatively 
high temperatures in the vicinity of the symmetry line 
on the inner wall between 6 G 40” and 0 z 90”. The 
presence of this region signifies the role of secondary 
flow, which scoops heat from the outer wall region 
and transports it to near the inner wall in the middle 
and upper parts of the curved duct (0 sz 40” to 
0 Z 900). 

The Nusselt number is a key parameter which can 
be acquired by analyzing the computed thermal field. 
For the present three-dimensional flow data, it is 
advantageous to introduce suitably-averaged NusseIt 
numbers. The peripherally-averaged Nusselt number, 
%,, at a given curve angle 8, is defined as 

in which L, represents the peripheral length and n the 
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boundary condition. 

directionnormaltotheduct wall. Inasimilarmanner, 
the plane-averaged Nusselt number, G, at a given 
curve angle 8, for the component wall of the duct, i.e., 
the inner, outer, or side wall, is defined as 

where L denotes the local width of the wall concerned. 
Figure 9 illustrates the above-defined Nusselt num- 

bers. In the first, when the Reynolds number is low 
(see Figs. 9(a) and (c)), the secondary flow is weak 
and convective heat transfer is dominated by the axial 
flow. On the surface of outer wall, the Nusselt number 
decreases mildly with axial distance from the duct 
inlet (0 = 0°) to intermediate values of the curve angle 
(0 z 20-30”). After passing through a minimum, % 
increases gradually in the downstream areas up to the 
duct exit (0 = 90”). The Nusselt number variations on 
the surfaces of other walls are similar to those of a 
straight duct flow. On the other hand, in the high- 
Re regime (see Figs. 9(b) and cd)), a substantially 
different picture emerges. The secondary ffows and 
the distortion of the axial flows toward outer and side 
walls play a significant role, and the heat transfer 
properties show considerable axial variations accord- 
ingly. In the inlet region of the curved duct, the 
peripherally-averaged Nusselt number, Nu,, initially 
decreases with the axial distance until reaching a mini- 
mum around B = 15”. In this inlet region, the sec- 

ondary flow has not developed yet to a sufficient 
strength. At intermediate and large curve angles 
(e 3 lY), secondary flows are substantial in magni- 
tude, and, as a result of these secondary flows, heat 
transfer is enhanced. Figure 9 reaffirms the antici- 
pation that the intensification of the global heat trans- 
fer is noticeable in the high-& regime (compare the 
magnitudes of the ordinates in Fig. 9). Perusal of Figs. 
9(b) and (d) recaptures the earlier assertion that, in 
the inlet region, % is higher on the inner wall than 
on the outer wall, but after 0 z 15”, the trend is 
reversed. It is also interesting to gauge the difference 
in Nu between the inner and outer walls ; the difference 
is largest near 8 = 40”. The axial variations of Nu on 
the side wall and of ??& are comparatively mild, and 
they are qualitatively similar to ?i% on the outer wall. 

In an effort to portray the local heat transfer charac- 
teristics, the peripheral profiles of the local Nu in the 
developing flow region are mapped in Fig. 10. The 
local Nu is evaluated, 

In general, peripheral variations of Nu are more pro- 
nounced at high Reynolds numbers, as expected. In 
the low-& regime (see Figs. IO(a) and (c)), the profiles 
of local Nu on the inner and outer walls bulge toward 
the symmetry plane. On the side wall, the local Nu 



(b) 

(4 

(0” > (30") (60’ > 

0 
10 
20 
30 

401 

(0” > (30" 

(0" > (30°) (60” ) wf > 
40 

30 

20 
10 10 
0 0 

inner 

P 

4 .A 
m 

o 
outer 

0 
10 102030 10 102030 

20 Nu ;; Nu 
30 

40 Uf) (307 

0 
10 

20 
30 

4o 

P 

102030 

Nu 

(60' ) (go0 > 

(60” > (90” > 

10 
0 

0 
10 

::r 

102030 

20 Nu 
30 

FIG. 10. Profiles of local Nusselt numbers on the surfaces. (a) Re = 50, R = 2.3 ; constant wall heat flux 
boundary condition. (b) Re = 790, R = 2.3; constant wall heat flux boundary condition. (c) Re = 50, 
R = 2.3 ; constant wall temperature boundary condition. (d) Re = 790, R = 2.3 ; constant wall temperature 

boundary condition. 



Heat transfer in the developing flow region 2549 

tends to be large near 0 = 0” and tends to decrease 
slightly with the downstream axial distance. 

The local NU maps display more complex patterns 
in the high-& regime (see Figs. IO(b) and (d)). The 
overall shapes of these plots are consistent with the 
physical descriptions of the flow and thermal fields 
that were offered earlier. The local-& profiles con- 
tained in Fig, IO(d) at 8 = 90” are in close agreement 
with the results of ref. [13] ; no precision comparisons 
were attempted since the data of ref. 1131 were given 
for the plane at 0 = 87” only. 

5. CONCLUSIONS 

Extensive and systematically-organized numerical 
results of flow and heat transfer properties have been 
obtained for a developing flow in a 90”-curved square 
duct. The fulty elliptic three-dimensional Navier- 
Stokes equations have been solved. 

The computed flow field is consistent with the avail- 
able data in the literature. The flow characteristics in 
the low- and high-Re regimes are depicted in detail. 
At high Re, a zone of reverse flow is present near the 
corner of outer and side walls ; the adverse pressure 
gradient is appreciable in this zone. 

Details of the temperature field and the associated 
heat transfer were analyzed and appropriate physicat 
explanations were offered. In the high-Re regime, the 
axial variations of the Nusselt numbers, both aver- 
aged and local, exhibit interesting behavior. In the 
duct inlet region, convective heat transfer is higher on 
the inner wall than on the outer wall. However, at 
intermediate and far downstream locations, heat 
transfer is more effective on the outer wall. It is impor- 
tant to note that heat transfer is much reduced in the 
zone of reverse Bow, which occurs near the inlet outer 
wall--side wall corner area. 
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TRANSFERT THERMIQUE CONVECTIF DANS LA REGION D’ETABLISSEMENT 
D’ECOULEMENT DANS UN CANAL QUARRE A FORTE COURBURE 

R&m&On etudie numeriquement les caracteristiqucs de vitesse et de convection thermique dans un 
t‘coulement laminaire dans un conduit carre courbe a 90 ‘, avec parties rectilignes a l’entree et a la sortie. 

Les equations elliptiques, tridimensionnelles, permanentes de fluide incompressible selon Navier-Stokes 
sont resolues numeriquement sur des larges domaines de nombre de Reynolds Re (et de Dean en cor- 
respondance). Un systeme de coordonnees lie au corps est utilise. On adopte deux conditions aux limites 
thermiques: temperature parietale constante, densite de flux constant. Les rtsultats numb-riques sont 
cohtrents avec les donnees disponibles sur le champ d’ecoulement. Des details sur le champ de temperature 
sent don& ainsi que sur le nombre de Nusselt dans la region courbe. Au voisinage de I’entrte de la 
region courbe. le transfert thermique est plus grand sur la paroi interne a cause d’ecoulements locaux 

acceleres pres d’elle. Neanmoins, plus en aval. le transfert est plus grand sur la paroi exterieure du fait de 

la force centrifuge. Quand le nombre de Reynolds augmente, une region de renvcrsement d’tcoulement 

apparait dans le coin entre les parois externes et laterales pres de l’entree du coude. Le transfert thermique 

est diminue dans cette region. Les resultats illustrent clairement les variations du nombre de Reynolds a 
la fois sur la peripherie et dans le sens de l’tcoulement principal. 

KONVEKTIVER WARMEUBERGANG IN DER EINLAUFZONE EINES 
QUADRATISCHEN KANALS MIT EINER STARKEN KRUMMUNG 

Zusammenfassung-Das Verhalten von Geschwindigkeit und konvektivem Warmetibergang bei laminarer 
Strijmung in der Einlaufzone eines quadratischen Kanals mit einer 90”-Kriimmung wird umfassend numer- 
isch untersucht. An den Kanal sind gerade EinlaD- und AuslaBkanlle angeschlossen. Die vorstandigen 
elliptischen dreidimensionalen, stationaren Navier-Stokes Gleichungen fiir inkompressible Striimung 
werden numerisch in einem weiten Bereich der Reynolds-Zahl Re (und der korrespondierenden Dean- 
Zahl) gel&t. Dabei wird ein k&perangepaBtes Koordinatensystem verwendet. Im Bereich der Krtimmung 
werden zwei thermische Randbedingungen angenommen : konstante Wandtemperatur und konstante 
Wlrmestromdichte. Die numerischen Ergebnisse sind mit verfiigbaren Daten fiir das Striimungsfeld kon- 
sistent. Die Einzelheiten des Temperaturfeldes, sowie die Nusselt-Zahl in der gekriimmten Region werden 
dargestellt. Der EinfluB der Reynolds-Zahl auf den lokalen Warmeilbergang an verschiedenen Stellen des 
Striimungsfeldes wird untersucht. Die ubereinstimmung der thermischen Randbedingungen im Bereich 
der Krilmmung wird gepriift. In der Umgebung des Eingangs der gekrtimmten Region ist der War- 
meiibergang an der inneren Wand aufgrund von lokalen Beschleunigungsstriimungen starker. Der War- 
metibergang wird jedoch weiter stromabwHrts an der luBeren Wand intensiver, da das Maximum des 
Hauptstroms durch die Zentrifugalkraft zur LuBeren Wand verschoben wird. Mit zunehmender Reynolds- 
Zahl erscheint in der Eckregion zwischen den 5uBeren und den Seitenwlnden in der Nlhe des Eingangs 
zur Kriimmung ein Gebiet der Rilckstriimung. Der Warmelbergang in dieser Gegend ist vermindert. Die 
vorliegenden berechneten Ergebnisse zeigen klar die Veranderungen der Nusselt-Zahl in Umfangs- und in 

Striimungsrichtung. 

KOHBEKTHBHMH TEI-IJIOHEPEHOC HA Y’IACTKE PA3BHBAFOIEEFOCR TE’IEHMII B 
CMJIbHO H30FHYTOM KAHAJIE KBAWATHOFO CEgEHHR 

iiEBOTZl~%CJIeHHO SiCCJIeAylOTCn CKOpOCTb W XapaKTepACTtHCH KOHBeKTHBHOfO TeMOnep’ZHOCa npH 

pa3ntmaIoueMcn nahuiHapHoM Te-IeIiHH B KaHane KsanpaTHoro Ce~eHHX c ~3r~i60~ B 90”. K exony B 
BMXOAy H3 KaHaJla npHMb,KaEOT II0 KaCaTeHbHOii HpKMMe yYaCTKEi. %iCJleHHO pWHHOTCH HOHHOCTblO 
3,U,HnTHWCKHe Tpe.XMepHbIe CTaHHOHapHMe ypaBHeHHA HaBbe-CTOKCa AHK HeCKCHMaeMO~ ZUWKOCTH B 

tmipo~ax riHTepsanax ri3MeHemin wicna PeiIHonbnca Re (H cooTeeTcTsymmer0 wcna &Ha). kIcnonb- 

3yeTcn csicTeMa KoopAnHaT,cnn3aHHanc 05TeKaehsbw TenoM. Ha s3rri6e. HpriHK~br nea Bwa TennoBbIx 

rpaH”HHMX yCHOBEIii: C HOCTOHHHOfi TeMHepalypOii CTeHKEt H C nOCTOnHHbIM TeIUIOBbIM IlOTOKOM Ha 

CTeHKe. YecneHHbte pe3ynbTaTM cornacymxn c HMeIo~huiCn AaHHbmH nnn norm TeSeHm. llpemxae- 
new xapaxrepHcTuxu TehfnepaTyptioro norm B yricno HyCCeHbTa Ha yHacrKe uwH6a. klccnenyewzn 
rwuwe 3Ha9eHHn Re Ha noKa_nbHbIfi TennonepeHoc B pa3nsiuHarx o6nacTnx norm Te-iem. Pacmarpa- 
BaeTcn TaKxe msinHm TennoBoro rpaHHgHor0 ycnosun Ha n3rsi6e. B OK~~~THOCTH nxona K yYacroK 
ssru6a TeIIAonepeHoc 6onee HHTeHCBBeH Ha BHyTpWHefi CTeHKe H3-3a HaJIHYHn yCKOpmU&iXCK TeveHtifi. 

OJ(HaKO C pXCTO%IHtieM BHH3 IlO IIOTOKy TeMOllepeHOC IlpOHCXOAliT HIiTeHCEBHeii Ha BHelUHefi CTCHKC, 

n0cKonbKy M~KCHMYM OCHOLIH~~O noToKa cMemaeTcn K errerurleii H 60~0~0ii creHKaM noK KeacTnrieM 

HeHTpo6eIKHMX CHJI. no Mepe yeenHHeHHn Hricna PeiiHonbnca B yrnoeo% o6nacru Mewy eHeuIHei+i Al 

60KOBOfi CTeHKaMH y BXOAa B n3rH6 B03HHKaeT y%lCTOK 06paTHOrO TWieHHn.nOJIy‘IeHHrJe pe3yJlbTaTbt 
pacreToe HarnnjTHo nOKa3MBarOT I13MeHeHHII ‘HiCeJt HyCCeHbTa KaK Ha lIepti+pHH, TaK H B Hal,paBAeH%SH 

TeveHWn. 


